"Humans"

Roles for ATF6 and the sarco/endoplasmic reticulum protein quality control system in the heart.

The hypertrophic growth of cardiac myocytes is a highly dynamic process that underlies physiological and pathological adaptation of the heart. Accordingly, a better understanding of the molecular underpinnings of cardiac myocyte hypertrophy is …

Mechanistic target of rapamycin complex 2 protects the heart from ischemic damage.

BACKGROUND: The mechanistic target of rapamycin (mTOR) comprises 2 structurally distinct multiprotein complexes, mTOR complexes 1 and 2 (mTORC1 and mTORC2). Deregulation of mTOR signaling occurs during and contributes to the severity of myocardial …

Regulation of cardiac hypertrophic signaling by prolyl isomerase Pin1.

RATIONALE: Cardiac hypertrophy results from the complex interplay of differentially regulated cascades based on the phosphorylation status of involved signaling molecules. Although numerous critical regulatory kinases and phosphatases have been …

New concepts of endoplasmic reticulum function in the heart: programmed to conserve.

Secreted and membrane proteins play critical roles in myocardial health and disease. Studies in non-myocytes have shown that the peri-nuclear ER is the site for synthesis, folding, and quality control of most secreted and membrane proteins, as well …

Roles for the sarco-/endoplasmic reticulum in cardiac myocyte contraction, protein synthesis, and protein quality control.

Although the function of the sarcoplasmic/endoplasmic reticulum (SR/ER) in cardiac contractile calcium handling is well established, its roles in protein synthesis, folding, and quality control in cardiac myocytes are not as clear. This review …

Limitation of individual folding resources in the ER leads to outcomes distinct from the unfolded protein response.

ER stress leads to upregulation of multiple folding and quality control components, known as the unfolded protein response (UPR). Glucose Regulated Protein 78 (GRP78) (also known as binding immunoglobulin protein, BiP, and HSPA5) and GRP94 are often …

Mesencephalic astrocyte-derived neurotrophic factor protects the heart from ischemic damage and is selectively secreted upon sarco/endoplasmic reticulum calcium depletion.

The endoplasmic reticulum (ER) stress protein mesencephalic astrocyte-derived neurotrophic factor (MANF) has been reported to protect cells from stress-induced cell death before and after its secretion; however, the conditions under which it is …

Functions for the cardiomyokine, MANF, in cardioprotection, hypertrophy and heart failure.

We define cardiomyokines as heart-derived secreted proteins that affect cardiovascular function via autocrine, paracrine and/or endocrine mechanisms. The subject of this review is the cardiomyokine, mesencephalic astrocyte-derived neurotrophic factor …

The cardiokine story unfolds: ischemic stress-induced protein secretion in the heart.

Intercellular communication depends on many factors, including proteins released via the classical or non-classical secretory pathways, many of which must be properly folded to be functional. Owing to their adverse effects on the secretion machinery, …

Pim-1 kinase protects mitochondrial integrity in cardiomyocytes.

RATIONALE: Cardioprotective signaling mediates antiapoptotic actions through multiple mechanisms including maintenance of mitochondrial integrity. Pim-1 kinase is an essential downstream effector of AKT-mediated cardioprotection but the mechanistic …