We have previously demonstrated that ischemia/reperfusion (I/R) impairs endoplasmic reticulum (ER)-based protein folding in the heart and thereby activates an unfolded protein response sensor and effector, activated transcription factor 6α (ATF6). …
RATIONALE: Endoplasmic reticulum (ER) stress causes the accumulation of misfolded proteins in the ER, activating the transcription factor, ATF6 (activating transcription factor 6 alpha), which induces ER stress response genes. Myocardial ischemia …
ER stress leads to upregulation of multiple folding and quality control components, known as the unfolded protein response (UPR). Glucose Regulated Protein 78 (GRP78) (also known as binding immunoglobulin protein, BiP, and HSPA5) and GRP94 are often …
The endoplasmic reticulum (ER) stress protein mesencephalic astrocyte-derived neurotrophic factor (MANF) has been reported to protect cells from stress-induced cell death before and after its secretion; however, the conditions under which it is …
OBJECTIVE: Activating transcription factor 6 (ATF6) is a sensor of the endoplasmic reticulum stress response and regulates expression of several key lipogenic genes. We used a 2-stage design to investigate whether ATF6 polymorphisms are associated …
The endoplasmic reticulum (ER)-transmembrane proteins, ATF6 alpha and ATF6 beta, are cleaved during the ER stress response (ERSR). The resulting N-terminal fragments (N-ATF6 alpha and N-ATF6 beta) have conserved DNA-binding domains and divergent …
The endoplasmic reticulum (ER) transmembrane proteins, ATF6alpha and ATF6beta, are cleaved in response to ER stress, which can be induced by tunicamycin. The resulting N-terminal fragments of both ATF6 isoforms, which have conserved basic …
ATF6 is a 670-amino acid endoplasmic reticulum (ER) transmembrane protein that is cleaved in response to ER stress. The resulting N-terminal fragment of approximately 400 amino acids translocates to the nucleus and activates selected ER …