The alpha-adrenergic stimulation of atrial natriuretic factor expression in cardiac myocytes requires calcium influx, protein kinase C, and calmodulin-regulated pathways.

Abstract

It has been shown recently that alpha-adrenergic agonists can stimulate atrial natriuretic factor (ANF) expression in ventricular cardiac myocytes; however, little is known about the intracellular signals mediating this activation. The present study focused on the potential roles of calcium-regulated kinases and calcium influx in the alpha-adrenergic stimulation of ANF gene expression in ventricular myocardial cell cultures. Myocardial cells maintained for 48 h in serum-free medium supplemented with phenylephrine (PE) possessed up to 15-fold higher levels of ANF peptide and ANF mRNA than control cells. The removal of PE, or the addition of nifedipine, resulted in a rapid decline in ANF expression, suggesting that the sustained elevation of some intracellular messenger (e.g. calcium and/or phospholipid hydrolysis products) was required for the adrenergic response. The calcium channel agonist BAY K 8644 was capable of increasing ANF expression in a nifedipine-sensitive manner; however, unlike PE, it did not stimulate phosphoinositide hydrolysis. The protein kinase C inhibitor, H7, caused an approximate 75% reduction in PE-stimulated ANF expression, but had no effect on BAY K-stimulated expression. W7, a calcium/calmodulin inhibitor, completely blocked the effects of both PE and BAY K 8644. The addition of either H7 or W7 24 h after the PE addition resulted in a decline of ANF expression. These results indicate that alpha-adrenergic agonists augment ANF gene expression through at least two pathways, one that is H7-sensitive, perhaps involving the sustained activation of protein kinase C, and the other that is W7-sensitive, perhaps involving the sustained activation of calmodulin-regulated kinases. Further, it appears that BAY K 8644-mediated increases in ANF expression are independent of protein kinase C activation and dependent on calmodulin-regulated events.

Publication
The Journal of biological chemistry

Related