Intercellular communication depends on many factors, including proteins released via the classical or non-classical secretory pathways, many of which must be properly folded to be functional. Owing to their adverse effects on the secretion machinery, stresses such as ischemia can impair the folding of secreted proteins. Paradoxically, cells rely on secreted proteins to mount a response designed to resist stress-induced damage. This review examines this paradox using proteins secreted from the heart, cardiokines, as examples, and focuses on how the ischemic heart maintains or even increases the release of select cardiokines that regulate important cellular processes in the heart, including excitation-contraction coupling, hypertrophic growth, myocardial remodeling and stem cell function, in ways that moderate ischemic damage and enhance cardiac repair.